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c© Società Italiana di Fisica
Springer-Verlag 2000

On the reactions p + p → p + Λ + K+ and
p + p → p + Σ0 + K+ near thresholds

A.Ya. Berdnikov, Ya.A. Berdnikova, A.N. Ivanov, V.F. Kosmach, M.D. Scadronb, and N.I. Troitskaya

State Technical University of St. Petersburg, Department of Nuclear Physics,
Polytechnicheskaya 29, 195251 St. Petersburg, Russian Federation

Received: 1 November 2000
Communicated by V.V. Anisovich

Abstract. The cross-sections for the reactions of the strange production p + p → p + Λ + K+ and p +
p → p + Σ0 + K+ near thresholds of the final states pΛK+ and pΣ0K+ are calculated in the effective
Lagrangian approach. Our approach is based on the dominant contribution of the one-pion exchange and
strong interaction of the colliding protons in the initial state. The theoretical values of the cross-sections
agree reasonably well with the experimental data. The polarization properties of the Λ- and Σ0-hyperons
are discussed.

PACS. 11.10.Cd Field theory: Axiomatic approach – 25.10.+s Nuclear reactions involving few-nucleon
systems – 25.40.-h Nucleon-induced reactions – 25.40.Cm Elastic proton scattering

1 Introduction
Recent experimental data [1–4] on the production of
strangeness in pp collisions, p + p→ p + Λ+K+ [1–4] and
p + p→ p + Σ0 + K+ [4], for energies of colliding protons
in the region near the thresholds of the final states pΛK+

and pΣ0K+ have represented experimental values of the
cross-sections σpp→pΛK+

(ε) and σpp→pΣ0K+
(ε) with high

precision, where ε is an excess of energy that we define be-
low. As has been obtained in ref. [4] the cross-section for
the Σ0-hyperon, p + p → p + Σ0 + K+, exceeds by a fac-
tor 28 the cross-section for the production of Λ-hyperon,
p + p → p + Λ + K+, measured for the equivalent excess
energies. These data give a possibility for testing of vari-
ous theoretical approaches to mechanisms of a strangeness
production from nucleons that is important for correct
description of a strangeness production in heavy-ion col-
lisions.

The parer is organized as follows. In section 1 we cal-
culate the effective Lagrangians of the transitions p + p
→ p + Λ + K+ and p + p → p + Σ0 + K+ in the
one-pion exchange approximation and at leading order in
momentum expansion in powers of the momenta of final-
state particles. In section 2 we calculate the cross-sections
for the reactions p + p → p + Λ + K+ and p + p → p
+ Σ0 + K+ and compare the theoretical results with the
experimental data. In the conclusion we discuss the ob-
tained results and the polarization properties of the Λ0-
and Σ0-hyperons.
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2 Effective Lagrangians of transitions
p + p → p + Λ(Σ0) + K+

In our approach to the description of the reactions p + p
→ p + Λ + K+ and p + p → p + Σ0 + K+, first, we
suggest to investigate the transitions p + p → p + Λ +
K+ and p + p → p + Σ0 + K+, where the wave func-
tions of the protons in the initial pp state are described by
plane waves and all particles in the final states pΛK+ and
pΣ0K+ are decoupled. These transitions we define by the
effective Lagrangians Lpp→pΛK+

(x) and Lpp→pΣ0K+
(x).

For the evaluation of these effective Lagrangian we sug-
gest to use a simplest one-pion exchange approximation.
The Feynman diagrams defining the effective Lagrangians
Lpp→pΛK+

(x) and Lpp→pΣ0K+
(x) are depicted in fig. 1.

The analytical expressions corresponding to these dia-
grams read

M(pp → pΛK+) =

= [ū(pp, αp)iγ5u(p1, α1)]
g2

πNN

M2
π − (pp − p1)2

× [ū(pΛ, αΛ)iγ5 gpΛK+

Mp − p̂Λ − p̂K
iγ5u(p2, α2)]

−[ū(pp, αp)iγ5u(p2, α2)]
g2

πNN

M2
π − (pp − p2)2

× [ū(pΛ, αΛ)iγ5 gpΛK+

Mp − p̂Λ − p̂K
iγ5u(p1, α1)], (1)

where gπNN = 13.4 is the coupling constant of the πNN
interaction, u(pi, αi) are bispinors of the protons for i =
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Fig. 1. The one-pion exchange diagrams describing the effec-
tive Lagrangian of the low-energy transition p + p → p + Λ
+ K+.

1, 2, 3 and the Λ-hyperon for i = Λ with polarizations
αi. Then, Mπ = 135MeV and Mp = 938.3MeV are the
masses of the π0-meson and the proton. The amplitude
of the transition p + p → p + Σ0 + K+ can obtained
from eq. (1) by the replacements gpΛK+ → gpΣ0K+ and
pΛ → pΣ0 . We would like to accentuate that we are using
the pseudoscalar couplings for the description of the π0

and the K+-meson coupled to baryons that always fit data
well [5].

In the center-of-mass frames of the colliding protons
and the pΛ system the amplitude eq. (1) takes the form

see equation (2) on the next page

where p1 = −p2 = p is a relative momentum of the
colliding protons, qpΛ is a relative momentum of the pΛ
system, and pK is the momentum of the K+-meson.

The reaction p + p → p + Λ(Σ0) + K+ is deter-
mined experimentally very close to threshold of the fi-
nal state pΛK+ (or pΣ0K+). The minimum relative 3-
momentum of the initial protons is equal to |p |threshold =
p0 =

√
(MΛ +MK+ −Mp)(MΛ +MK+ + 3Mp)/2 =

861.6MeV, where we have used MΛ = 1115.7MeV and
MK+ = 493.7MeV, the masses of the Λ-hyperon and the
K+ meson [6]1. Due to this close vicinity to threshold the

1 For the reaction p+p→p+Σ0+K+ the minimum relative
momentum of the colliding protons amounts to |p|threshold =

p0 =
√
(MΣ0 +MK+ − Mp)(MΣ0 +MK+ + 3Mp)/2 =

917.5MeV at MΣ0 = 1192.6MeV [6].

momentum of the K+-meson and the relative movement
of the pΛ system (or pΣ0) are smaller compared with all
energy scales of the coupled particles. This allows to ex-
pand the matrix element eq. (2) in powers of pK and qpΛ

by keep leading contributions:

M(pp → pΛK+) =

− gpΛK+g2
πNN

Mp +MΛ +MK+

1

M2
π + 2Mp(

√
M2

p + p2
0 −Mp)

×{[ū(−qpΛ − pK/2, αp)iγ5u(p, α1)]
× [ū(qpΛ − pK/2, αΛ)u(−p, α2)]

−ū(−qpΛ − pK/2, αp)iγ5u(−p, α2)]
× [ū(qpΛ − pK/2, αΛ)u(p, α1)]}. (3)

By introducing the effective coupling constant CpΛK+

CpΛK+ =
gpΛK+g2

πNN

Mp +MΛ +MK+

× 1

M2
π + 2Mp(

√
M2

p + p2
0 −Mp)

, (4)

we can write down the effective Lagrangian Lpp→pΛK+
(x)

of the transition p + p → p + Λ + K+. That reads

Lpp→pΛK+
(x) =

−CpΛK+ ϕ†
K+(x) [p̄(x)iγ5p(x)][Λ̄(x)p(x)], (5)

where p(x) and Λ(x) are the operators of the interpolating
proton and Λ-hyperon fields, and ϕ†

K+(x) is the operator of
the interpolating K+-meson field. By making the replace-
ment Λ → Σ0 in eq. (5) we obtain the effective Lagrangian
Lpp→pΣ0K+

(x) of the transition p + p → p + Σ0 + K+.
It is convenient to represent the effective Lagrangian in

terms of the interactions describing the pΛ system in the
certain spin state. This can be carried out by means of a
Fierz transformation [7]. By performing a Fierz transfor-
mation, we recast the effective Lagrangian Lpp→pΛK+

(x)
into the form

Lpp→pΛK+
(x) = i

1
4
CpΛK+ ϕ†

K+(x)

×{[p̄(x)γ5Λc(x)][p̄c(x)p(x)] + [p̄(x)Λc(x)][p̄c(x)γ5p(x)]
+ [p̄(x)γµΛc(x)][p̄c(x)γµγ

5p(x)]}. (6)

The first term and the last two in the Lagrangian equa-
tion (6) describe the pΛ system coupled in the spin singlet
and triplet state, respectively.

Since near threshold the pΛ (or pΣ0) system cou-
ples mainly in the spin singlet state, 1S0, we should leave
only the first term. This yields the following effective La-
grangian:

Lpp→pΛK+
(x) = i

1
4
CpΛK+ ϕ†

K+(x)

× [p̄(x)γ5Λc(x)][p̄c(x)p(x)]. (7)
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M(pp→ pΛK+) = [ū(−qpΛ − pK/2, αp)iγ
5u(p, α1)]

× g2
πNN

M2
π −

(√
M2

p + (qpΛ + pK/2)2 −
√

M2
p + p 2

)2

+ (p+ qpΛ + pK/2)2

× [ū(qpΛ − pK/2, αΛ)iγ
5

× gpΛK+

Mp − γ0
(√

M2
Λ + (qpΛ − pK/2)2 +

√
M2

K + p 2
K

)
+ γ · (qpΛ + pK/2)

iγ5u(−p, α2)]

−[ū(−qpΛ − pK/2, αp)iγ
5u(−p, α2)]

× g2
πNN

M2
π −

(√
M2

p + (qpΛ + pK/2)2 −
√

M2
p + p 2

)2

+ (p − qpΛ − pK/2)2

× [ū(qpΛ − pK/2, αΛ)iγ
5

× gpΛK+

Mp − γ0
(√

M2
Λ + (qpΛ − pK/2)2 +

√
M2

K + p 2
K

)
+ γ · (qpΛ + pK/2)

iγ5u(p, α1)], (2)

The wave functions of the particles in the transition p +
p → p + Λ + K+ are plane waves. In order to describe
a physical reaction p + p → p + Λ + K+, we suggest to
take into account interactions between particles both in
the final and in the initial state.

3 cross-sections for near threshold reactions
p + p → p + Λ(Σ0) + K+

The contribution of the interaction in the pΛ-system can
be obtained by summing up an infinite series of one-baryon
loop diagrams with a point-like (p̄Λ̄)(pΛ) coupling describ-
ing a low-energy transition p + Λ → p + Λ [7]. After
the evaluation of momentum integrals and the renormal-
ization of the wave functions of the proton and the Λ-
hyperon [7] we can represent the contribution of this se-
ries in the phenomenological form in terms of the S-wave
scattering length apΛ and the effective range rpΛ:

fpΛ→pΛ(qpΛ) =
1

1− 1
2
apΛrpΛq

2
pΛ + i apΛqpΛ

. (8)

This is the well-known Watson form for the final-state
interaction [8] that has been used by Balewski et al. [9]
for the description of the final pΛ interaction in the reac-
tion p + p → p + Λ + K+. Below we use the numerical
values of the S-wave scattering length and the effective
range, apΛ = −2.0 fm and rpΛ = 1.0 fm, recommended
by Balewski et al. [9]. We would like to emphasize that
since finally the contribution of the final-state interac-
tion is expressed in terms of phenomenological parame-
ters, the S-wave scattering length and the effective range
taken from experimental data, a knowledge of an explicit
value of a coupling constant of a local (p̄Λ̄)(pΛ) interaction
describing a low-energy transition p + Λ → p + Λ and
defining vertices in the one-baryon loop diagrams is not
important [7]. For the analysis of elastic low-energy pΣ0

scattering we assume that apΣ0 = apΛ = −2.0 fm and

rpΣ0 = rpΛ = 1.0 fm. Below we show that this assumption
does not contradict the experimental data [4].

Unlike the pΛ interaction in the final state, in order
to describe the interaction in the initial pp state, we have
to specify the coupling constant of the transition p + p
→ p + p. Since the relative momentum of the pp state is
comeasurable with the proton mass, a Coulomb repulsion
between protons can be neglected. We suggest to describe
the pp interaction in the one-pion exchange approxima-
tion. As experimentally the relative momenta of the pp
state differ slightly from the threshold momentum, we can
represent the pp interaction describing the transition p +
p → p + p in the following local form:

Lpp→pp(x) =
1
8
Cpp [p̄(x)pc(x)][p̄c(x)p(x)]. (9)

This effective Lagrangian describes the pp system coupled
in the spin-triplet state. In the factor 1/8 the multiplier
1/4 is caused by a Fierz transformation of the one-pion
exchange interaction [7]. The phenomenological coupling
constant Cpp is then defined by

Cpp =
g2

πNN

4p 2
ln

(
1 +

4p 2

M2
π

)
. (10)

It is obtained from the one-pion exchange diagram of the
transition p + p → p + p by averaging over all possible
directions of the relative momentum of the final pp state.
We would like to accentuate that since relative momenta
of the incident protons are very close to threshold, the
quantity Cpp is practically constant determined by p 2 �
p2
0 at p0 = 861.4MeV or p0 = 917.5MeV for the reactions
p + p → p Λ + K+ and p + p → p Σ0 + K+, respectively.

By summing up an infinite series of one-proton loop
diagrams the vertices of which are defined by the effective
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interaction eq. (9), we arrive at the expression [7]

[ūc(−p, α2)u(p, α1)] →
[ūc(−p, α2)u(p, α1)]

1 +
Cpp

64π2

∫
d4k

π2i
tr

{
1

Mp − k̂

1

Mp − k̂ − P̂

} , (11)

where P = (2
√

p 2 +M2
p ,0 ).

After the subtraction of trivial p-independent diver-
gent contributions and the renormalization of the wave
functions of the protons we obtain the contribution of the
interaction of the protons in the initial state

see equation (12) on the next page

where Cpp(p 2, Λ) is given by

Cpp(p 2, Λ) =
Cpp

1+
Cppp 2

4π2

[
ln

(
Λ

MN
+

√
1+

Λ2

M2
N

)
− Λ√

M2
N+Λ2

] . (13)

The appearance of the cut-off Λ is caused by non-trivial
p-dependent logarithmically divergent contributions. The
cut-off Λ restricts from above 3-momenta of virtual proton
fluctuations. Since our approach is an effective one, so the
dependence of the amplitude on the cut-off seems to be
usual [10,11]. The only thing one needs is to choose the
value of the cut-off in an appropriate physical way. In our
case it is reasonable to have Λ to be of order of the mass of
the resonance nearest to the nucleon, that is the ∆(1232)-
resonance [6]. Therefore, in our calculations we would set
Λ = 1200MeV.

Thus, the amplitude of the reaction p + p → p + Λ +
K+ near threshold of the final pΛK+ state is defined by

see equation (14) on the next page

where the last factor depending on α = 1/137, the fine
structure constant, and qpK+ , the relative momentum of
the pK+ system, takes into account the Coulomb re-
pulsion between the daughter proton and the K+-meson
at low relative energies [9] ( see also [7]), MpK+ =
MpMK+/(Mp + MK+) is the reduced mass of the pK+

system.
Then, relative momenta of the pp system are very close

to threshold, |p | � p0 = 861.4MeV. Hence, we can cal-
culate the contribution of the interactions in the pp state
numerically. This gives

1

1+
Cpp(p2

0, Λ)
8π2

p3
0√

p2
0+M2

p


ln




√
p2
0+M2

p+p0√
p2
0+M2

p−p0


+π i




= 0.308 e−i 46.60
. (15)

For the reaction p + p → p + Σ0 + K+ we get
0.294 e−i 46.30

.

By calculating numerically a part of the coupling con-
stant CpΛK+ given by eq. (4), we reduce the amplitude of
the reaction p + p → p + Λ + K+ to the following form:

M(pp → pΛK+) = 1.676× 10−8 e−i 46.60

× gpΛK+

1− 1
2
apΛrpΛq

2
pΛ + i apΛqpΛ

× [ū(−qpΛ − pK/2, αp)iγ5uc(qpΛ − pK/2, αΛ)]
× [ūc(−p, α2)u(p, α1)]

×
√
MpK+

qpK+

2πα

e2παMpK+/qpK+ − 1
. (16)

For the reaction p + p → p + Σ0 + K+ the numerical
factor is equal to 1.433× 10−8 e−i 46.30

.
The amplitude squared, averaged over polarizations of

the initial protons and summed over polarizations of the
final baryons amounts to

|M(pp → pΛK+)|2 = 4.494× 10−15 p2
0MpMΛ

× g2
pΛK+(

1− 1
2
apΛrpΛq

2
pΛ

)2

+ a2
pΛq

2
pΛ

× MpK+

qpK+

2πα

e2παMpK+/qpK+ − 1
. (17)

For the reaction p + p → p + Σ0 + K+ the numerical
factor acquires the value 3.285× 10−15.

The cross-section for the reaction p + p → p + Λ +
K+ reads

σpΛK+(ε) = 0.043 g2
pΛK+ ε2 ΩpΛK+(ε), (18)

where the cross-section and the excess of energy ε =
2
√

p 2 +M2
p − Mp − MΛ − MK+ are measured in (nb)

and (MeV), respectively. The function ΩpΛK+(ε) related
to the phase volume of the reaction is defined by

ΩpΛK+(ε) =
1

4π3ε2

(
Mp +MΛ +MK+

MpMΛMK+

)3/2

×
∫

δ(3)(pp + pΛ + pK)(
1− 1

2
apΛrpΛq

2
pΛ

)2

+ a2
pΛq

2
pΛ

× MpK+

qpK+

2πα

e2παMpK+/qpK+ − 1

× δ

(
ε− p 2

p

2Mp
− p 2

Λ

2MΛ
− p 2

K

2MK+

)
d3pKd3ppd3pΛ (19)

and normalized to unity at α → 0 and apΛ → 0.
The cross-section for the reaction p + p → p + Σ0 +

K+ can be evaluated in analogy with the reaction p + p
→ p + Λ + K+ and reads

σpΣ0K+(ε) = 0.035 g2
pΣ0K+ ε2 ΩpΣ0K+(ε). (20)
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[ūc(−p, α2)u(p, α1)] → [ūc(−p, α2)u(p, α1)]

1 +
Cpp

64π2

∫
d4k

π2i
tr

{
1

Mp − k̂

1

Mp − k̂ − P̂

}

→ [ūc(−p, α2)u(p, α1)]

1 +
Cpp(p

2, Λ)

8π2

|p |3√
p 2 +M2

p

[
ln

(√
p 2 +M2

p + |p |√
p 2 +M2

p − |p |

)
+ π i

] , (12)

M(pp→ pΛK+) =
1

2
CpΛK+

[ū(−qpΛ − pK/2, αp)iγ
5uc(qpΛ − pK/2, αΛ)]

1− 1

2
apΛrpΛq2

pΛ + i apΛqpΛ

× [ūc(−p, α2)u(p, α1)]

1 +
Cpp(p

2, Λ)

8π2

|p |3√
p 2 +M2

p

[
ln

(√
p 2 +M2

p + |p |√
p 2 +M2

p − |p |

)
+ π i

]
√

MpK+

qpK+

2πα

e2παMpK+/qpK+ − 1
, (14)

The function ΩpΣ0K+(ε) results from eq. (19) via a re-
placement Λ → Σ0.

In terms of the axial-vector coupling constants D and
F and gπNN the coupling constants gpΛK+ and gpΣ0K+ are
defined by [12]

gpΛK+ = − 1√
3

(
D + 3F
D + F

)
gπNN,

gpΣ0K+ = −
(
D − F

D + F

)
gπNN. (21)

The cross-sections eqs. (18) and (20) then read

σpp→pΛK+
(ε) = 2.576

(
D + 3F
D + F

)2

ε2 ΩpΛK+(ε),

σpp→pΣ0K+
(ε) = 6.208

(
D − F

D + F

)2

ε2 ΩpΣ0K+(ε). (22)

For the numerical analysis the functions ΩpΛK+(ε) and
ΩpΣ0K+(ε) can be given in the more convenient form

ΩpΛK+(ε) =
2
πε2

Mp +MΛ

MΛ

√
MpMΛMK+

Mp +MΛ +MK+

×
ε∫
0

1
(1− apΛrpΛMpΛTpΛ)2 + 2a2

pΛMpΛTpΛ

×
v+
pK+∫

v−pK+

2πα

e2πα/vpK+ − 1
dvpK+dTpΛ, (23)

where we have denoted

v+
pK+ =

√
2(Mp +MΛ +MK+)
MK+(Mp +MΛ)

(ε− TpΛ)

+

√
2MΛ

Mp

TpΛ

Mp +MΛ
,

v−pK+ =

∣∣∣∣∣
√

2(Mp +MΛ +MK+)
MK+(Mp +MΛ)

(ε− TpΛ)

−
√

2MΛ

Mp

TpΛ

Mp +MΛ

∣∣∣∣∣ . (24)

The function ΩpΣ0K+(ε) should be obtained from the
function ΩpΛK+(ε) given by eq. (23) via a simple replace-
mentMΛ → MΣ0 . The numerical values of these functions
are tabulated in tables 1 and 2, respectively.

For numerical calculations of the cross-sections we use
F = 0.459±0.008 and D = 0.798±0.008 [13]. The numer-
ical values of the cross-sections for the excess of energy ε
ranging over the region 0.68MeV ≤ ε ≤ 6.68MeV [1,2,4]
are adduced in tables 1 and 2.

4 Conclusion

We have developed a phenomenological approach to the
description of the reactions p + p → p + Λ + K+ and p
+ p → p + Σ0 + K+ near thresholds of the final states
pΛK+ and pΣ0K+, respectively.

The theoretical cross-section for the reaction p + p →
p + Λ + K+ agrees reasonably well with the experimen-
tal data. The numerical values of the cross-sections are
adduced in table 1. We show that for the excess of en-
ergy ε ranging over the region 0.68MeV ≤ ε ≤ 6.68MeV
the cross-section is proportional to ε2, σpp→pΛK+

(ε) =
(4.5 ± 0.1) ε2 nb . This fits well the experimental value
σpp→pΛK+

(ε) = (4.4± 0.7) ε2 nb [2].
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Table 1. Cross-sections for the reaction p + p → p + Λ + K+ for the excess of energy ranging over the region 0.68MeV ≤
ε ≤ 6.68MeV. The experimental data are taken from ref. [2].

ε ΩpΛK+(ε) σpΛK+(ε) σpΛK+(ε)/ε2 σpΛK+(ε)exp σpΛK+(ε)exp/ε2

(MeV) (nb) (nb/MeV2) (nb) (nb/MeV2)
0.68 0.516 1.8± 0.1 4.0± 0.1 2.1± 0.2 4.54
1.68 0.605 13.2± 0.3 4.7± 0.1 13.4± 0.7 4.75
2.68 0.616 34.1± 0.7 4.8± 0.1 36.6± 2.6 5.10
3.68 0.609 63.6± 1.2 4.7± 0.1 63.0± 3.1 4.65
4.68 0.594 100.3± 1.9 4.6± 0.1 92.2± 6.5 4.21
5.68 0.577 143.5± 2.8 4.5± 0.1 135± 11 4.18
6.68 0.560 192.6± 3.7 4.3± 0.1 164± 10 3.68

4.5± 0.1 4.4± 0.7

Table 2. Cross-section for the reaction p + p → p + Σ0 + K+ for the excess of energy ranging over the region 0.68MeV ≤
ε ≤ 6.68MeV. The experimental data are taken from ref. [4].

ε ΩpΣ0K+(ε) σpΣ0K+(ε) σpΣ0K+(ε)/ε2 σpΣ0K+(ε)exp σpΣ0K+(ε)exp/ε2

(MeV) (nb) (nb/MeV2) (nb) (nb/MeV2)
0.68 0.515 0.11± 0.01 0.23± 0.03 0.14± 0.06 0.29± 0.14
1.68 0.603 0.80± 0.10 0.27± 0.03 0.73± 0.34 0.26± 0.12
2.68 0.613 2.00± 0.25 0.28± 0.03 1.67± 0.77 0.23± 0.11
3.68 0.605 3.71± 0.46 0.28± 0.03 2.87± 1.32 0.21± 0.10
4.68 0.590 5.85± 0.72 0.27± 0.03 4.26± 1.97 0.20± 0.09
5.68 0.572 8.36± 1.03 0.26± 0.03 5.83± 2.69 0.18± 0.08
6.68 0.555 11.29± 1.38 0.25± 0.03 7.53± 3.47 0.17± 0.08

0.26± 0.03 0.22± 0.11

The cross-section for the reaction p + p → p +
Λ + K+ has been also measured for the higher ex-
cess of energies [4]: σpp→pΛK+

(ε = 8.6MeV) = (264 ±
20) nb, σpp→pΛK+

(ε = 10.9MeV) = (392 ± 33) nb and
σpp→pΛK+

(ε = 13.2MeV) = (534 ± 47) nb. Our theoret-
ical predictions for these energies read: σpp→pΛK+

(ε =
8.6MeV) = (298 ± 6) nb, σpp→pΛK+

(ε = 10.9MeV) =
(444±9) nb and σpp→pΛK+

(ε = 13.2MeV) = (604±12) nb.
For the calculation of these cross-sections we have also
taken into account the momentum dependence of the
structure function Cpp(p 2, Λ).

We would like to emphasize that within our approach
the theoretical cross-section for the reaction p + p →
p + Λ + K+ fits well the experimental values just at
ε = 138MeV. Really, at ε = 138MeV the theoretical
value of the cross-section σpp→pΛK+

(ε = 138MeV) =
(13.2 ± 0.3)µb agrees well with the experimental one
σpp→pΛK+

(ε = 138MeV) = (12.0 ± 0.4)µb [3]. In aver-
age the accuracy of the agreement between the theoretical
cross-section for the reaction p + p → p + Λ + K+ and
the experimental data [2–4] is about 11%.

However, we cannot pass by the fact that the ex-
perimental value of the cross-section measured at ε =
55MeV [3]: σpp→pΛK+

(ε = 55MeV) = (2.7 ± 0.3)µb
is smaller by a factor 1.7 than the theoretical one:
σpp→pΛK+

(ε = 55MeV) = (4.7 ± 0.3)µb. Since the
theoretical cross-section in the excess of energy region
0.68MeV ≤ ε ≤ 138MeV is a smooth function of ε pro-
portional to ε2 and fits reasonably well the experimental
value of the cross-section at ε = 138MeV, we argue that
the result obtained at ε = 55MeV seems to be underesti-
mated and demands to be remeasured.

The cross-section for the reaction p + p → p + Σ0

+ K+ is also described well in our approach. The the-
oretical values of the cross-section adduced in table 2
are in reasonable agreement with the experimental data
for all excess of energies from the interval 0.68MeV ≤
ε ≤ 6.68MeV. In this energy region the theoretical
cross-section is proportional to ε2. The average value
σpp→pΣ0K+

(ε) = (0.26 ± 0.03) ε2 nb fits well the experi-
mental data σpp→pΣ0K+

(ε) = (0.22 ± 0.11) ε2 nb [4]. At
ε = 138MeV we predict σpp→pΣ0K+

(ε = 138MeV) =
(0.72 ± 0.08)µb that agrees well with the experimental
value σpp→pΣ0K+

(ε = 138MeV) = (1.0± 0.5)µb [3].
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In our approach the enhancement of the cross-section
for the reaction p + p → p + Λ + K+ with respect to
the cross-section for the reaction p + p → p + Σ0 +
K+ is completely a unitary symmetry effect. In fact, the
coupling constant gpΣ0K+ is smaller by a factor of 0.16
than the coupling constant gpΛK+ . This is in agreement
with the conclusion given by Kaiser [11]. However, unlike
Kaiser’s approach to the description of the reactions p +
p → p + Λ + K+ and p + p → p + Σ0 + K+, we point
out the dominant role of the contribution of the one-pion
exchange and the strong interaction of the protons in the
initial state.

The key-point of our approach to the description of
the protons coupled in the initial state is a reduction
of pp interaction to a local form via a phenomenologi-
cal interaction eq. (10) based on the one-pion exchange.
By having fixed the phenomenological coupling of a four-
proton interaction, we have then succeeded in deriving
the contribution of this interaction to the amplitudes of
the reactions p + p → p + Λ + K+ and p + p → p
+ Σ0 + K+ via the summation of an infinite series of
one-proton loop diagrams. After the evaluation of these
diagrams and the renormalization of the wave functions
of the protons, we have arrived at the expression that has
turned out to be dependent on a cut-off Λ restricting from
above the 3-momenta of the virtual proton fluctuations.
The appearance of a dependence on the cut-off is usual
in a phenomenological approach to the description of the
reactions under consideration [10,11]. The main point is
to fix this parameter in an appropriate way. The neglect
of the contribution of baryon resonances to the ampli-
tude of the pp interaction makes a hint that the cut-off Λ
should be of the order of the mass of the nearest resonance,
that is the ∆(1232)-resonance. That is why we have set
Λ = 1200MeV. As has been discussed above, this has led
to the description of the cross-sections for the reactions p
+ p → p + Λ + K+ and p + p → p + Σ0 + K+ with an
accuracy of about 11%.

We would like to underscore that our approach to the
description of the protons coupled in the initial state is
ideologically and technically rather similar to that applied
by Achasov et al. [14] to the analysis of the contribution
of the scalar a0(980)- and f0(980)-mesons treated as four-
quark states [15] to the amplitudes of ππ and πK elastic
scattering in the energy region of the order of 1GeV.

Unlike other available theoretical approaches to the
mechanism of ΛK+ and Σ0K+ production in pp collisions
[10,11,16], our mechanism does not demand the inclusion
of exchanges of all mesons heavier than the π0-meson and
baryon resonances N(1650), N(1710) and so on. One can
show that the summary contribution of the one-meson
exchanges of η(550)- ρ(770)- and ω(780)-meson and the
scalar isoscalar meson σ(700) [17–21] is of the order of
10% relative to the one-pion exchange. In fact, the esti-
mate of the summary contribution of the η(550)-, σ(700)-,
ρ(770)- and ω(780)-meson exchanges relative to the one-

pion exchange reads

1
3

(
D − 3F
D + F

)2
M2

π + 2Mp(
√
M2

p + p2
0 −Mp)

M2
η + 2Mp(

√
M2
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− 1
g2
A

M2
π + 2Mp(

√
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M2
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p + p2
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+2
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πNN

M2
π + 2Mp(

√
M2

p + p2
0 −Mp)

M2
ρ + 2Mp(

√
M2

p + p2
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= 0.05− 0.36 + 0.22 = −0.09(9%),

where we have assumed that the η(550) is the eighth
component of the octet of pseudoscalar mesons and the
coupling constant of the σNN interaction is equal to
gσNN = gπNN/gA [17] with gA = 1.267, the axial-vector
coupling constant [6]. Then, we have set gρ = 6.047 as
the ρππ coupling constant [6]. The value 9% can be re-
duced by including the contribution of the pseudoscalar
η′(958)-meson. This confirms that with a good accuracy
the one-pion exchange dominates in pp reactions for ΛK+

and Σ0K+ production at thresholds of the final pΛK+ and
pΣ0K+ states.

We do not take into account the contributions of
baryon resonances N(1650), N(1710) and so on [16]. Nev-
ertheless, the obtained agreement with the experimental
data allows us to think that effectively the contributions
of baryon resonances can be partly reproduced by the am-
plitude of the pp interaction in the initial state.

In our approach the daugther proton and the Λ-
hyperon as well as the daugther proton and the Σ0-
hyperon are in the spin-singlet state. This implies that the
direction of the spin of the Λ- and Σ0-hyperons is strictly
opposite to the direction of the spin of the daugther pro-
ton. Thereby, according to our approach, by measuring
a polarization of the daughter proton, one measures un-
ambiguously a polarization of the Λ- and Σ0-hyperons. Of
course, this is true only for an excess of energies very close
to the thresholds of the final states pΛK+ and pΣ0K+.
For an excess of energies at which the contribution of the
spin-triplet state of the pΛ and pΣ0 system becomes per-
ceptible the polarizations of the Λ- and Σ0-hyperons are
not so strictly determined. We are planning to carry out
the analysis of the polarization properties of the Λ- and
Σ0-hyperons by taking into account the contribution of
the spin-triplet states of the pΛ and pΣ0 systems in our
forthcoming publications 2.

Recent measurements of the polarization of the Λ-
hyperon in the reaction p + p → p + Λ + K+ at an
excess of energy ε = 431MeV [23] evidence an advantage
of the K+-meson exchange mechanism [24] with respect

2 The most complete phenomenological analysis of the reac-
tions p + p → p + Λ + K+ and p + p → p + Σ0 + K+

with polarized colliding protons near thresholds of the final
states pΛK+ and pΣ0K+, respectively, has been carried out
by Rekalo et al. [22].
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to the one-pion exchange one. In our approach being valid
for an excess of energies much less than ε = 431MeV, the
contribution of the K+-meson exchange makes up about
0.1% in comparison with the exchange by the π0-meson.

The work is supported in part by the Scientific and Technical
Programme of Ministry of Education of Russian Federation for
Fundamental Researches in Universities of Russia.
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